Modification of PA/PU superfine non-woven fiber for “breath” property using collagen and vegetable tannins

Author:

Xu Na1ORCID,Wang Xuechuan1,Wang Lezhi2,Zheng Yonggui2,Zhang Fengjie2,Guo Peiying1

Affiliation:

1. Shaanxi University of Science and Technology, Shaanxi, China

2. Shandong Tongda Island New Material Co., Ltd, Changyi, China

Abstract

Unfigured sea-island superfine fiber PA/PU non-woven (USFSLB) is used to mimic leather’s microstructure as the base of artificial leather. USFSLB has many characteristics and advantages resembling those of natural leather. However, compared with natural leather, the wearing comfort of artificial leather is inferior due to its poor moisture adsorption and permeability. In this work, a “two-step” method of chemical treatment is proposed, in which collagen/chromium-vegetable tannin (C-CrT) is immobilized on nylon fiber of USFSLB to improve its moisture adsorption and permeability (“breath” property). The two-step surface modification involved sulfuric acid hydrolysis and modifying the C-CrT on nylon fiber. Compared with the pristine USFSLB, the tensile strength, the elongation at break, the anti-static performance, the thickness, and the uniformity of C-CrT-treated USFSLB were improved at different levels. Importantly, the C-CrT-treated USFSLB showed excellent moisture adsorption and permeability, especially the liquid wicking rate (LWR) improved by 344%. The self-assembly mechanism of collagen/chromium-vegetable tannin (C-CrT) modified on nylon fibers was analyzed and discussed.

Funder

Young Scientists Fund of National Natural Science Foundation of China

National Key R &D Program of China

Doctoral Startup Fund of Shaanxi University Science and Technology

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3