Affiliation:
1. Department of Fashion Technology, Angel College of Engineering and Technology, Tiruppur, India
2. Department of Textile Technology, PSG College of Technology, Coimbatore, India
Abstract
In this study, the application of textile fabrics coated with biodegradable bioactive alginate film was investigated, which was obtained from natural polysaccharides such as sodium alginate extracted from sargassum wightii and padina tetrastromatica seaweeds. The functional groups present in the bioactive substances of alginate film coated fabrics was assessed using Fourier transform infrared spectroscopy, and the antioxidant and antibacterial properties of alginate film coated fabrics were assessed using DPPH free radical scavenging and EN ISO 20645 test methods, respectively. The effect of coatings on biomaterials was evaluated using field-emission scanning electron microscopy, and the effect of alginate film coated fabrics on comfort properties such as thickness, air permeability, wickability, flexural stiffness, and wettability was studied. The experimental result specifies that the maximum antioxidant activity of 54 ± 0.98% inhibition was achieved and maximum antibacterial activity was attained with the inhibition zone of 44 mm in alginate film coated textile fabrics. The air permeability, flexural stiffness, wettability, and wickability properties were slightly affected in both coated textile fabrics compared with uncoated fabric. The sargassum wightii alginate film coated textile fabric showed 80% of wound healing activity compared with padina tetrastromatica alginate film coated textile fabric. This alginate film coated textile fabrics are preferably suitable for nonimplantable materials such as wound healing, skin grafts, food industry, pharmaceutical industry, and hygienic textiles.
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献