Hybrid electrospun nanofibrous membranes: Influence of layer arrangement and composition ratio on moisture management behavior

Author:

Salmani Sangtabi Meisam1,Kamali Dolatabadi Mehdi1ORCID,Gorji Mohsen2,Gharehaghaji Ali Akbar3,Rashidi Abosaeed1

Affiliation:

1. Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2. New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, Iran

3. Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

This study aimed to examine the fabrication of bi-constituent nanofibrous membranes and investigation of their moisture management behavior in various environmental conditions. In doing so, polyurethane with a hydrophobic nature and superior mechanical behavior and poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS) with a hydrophilic nature were utilized. Different hybrid electrospun nanofibrous membranes were aligned based on different layer arrangements and composition ratios. Then, the impacts of the solid fraction of polymers, sequence of stacking, and environmental conditions on water vapor permeability, contact angle, and acidic water permeation were measured and discussed. Tracing the water vapor permeability behavior in samples was carried out through measuring the amount of permeation hourly and proposing some regression models. Bi-modal nanofibrous membranes were successfully fabricated using PAMPS and polyurethane with an average fiber diameter of 543.5 and 216.7 nm, respectively. As the volume fraction of PAMPS increased, the porosities of the samples remained unchanged, the number of pores increased, and the pore size decreased (the average pore diameter was 299.97 nm for the PAMPS sample and 492.35 nm for the polyurethane sample). Despite the better water vapor permeability of the polyurethane membranes than that of the PAMPS membranes, in the first 12 h of the water vapor permeability test, the trend was completely reverse. The results also revealed that in the relative humidity of 55%, the polyurethane layer had the highest water vapor permeability among all samples. The results of the acidic water permeation and contact angle tests showed that the hybrid electrospun nanofibrous membranes exhibit better wicking and wetting properties.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3