Hybrid electrospun nanofibrous membranes: Influence of layer arrangement and composition ratio on tensile and transport properties

Author:

Sangtabi Meisam S1,Dolatabadi Mehdi K1ORCID,Gorji Mohsen1,Gharehaghaji Ali A2,Rashidi Abosaid1

Affiliation:

1. Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran

2. Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

The present research aimed to investigate the influence of layer arrangement and composition ratio on tensile and transport properties in bi-constituent electrospun nanofibrous membranes composed of polyurethane nanofibers with a hydrophobic nature and poly(2-acrylamido-2-methylpropanesulfonic acid) with a hydrophilic nature. Different hybrid electrospun nanofibrous membranes were produced based on different layer arrangement and composition ratios. To evaluate the membrane performance, their tensile strength, wind, and waterproof performance were measured. By adding 50% poly(2-acrylamido-2-methylpropanesulfonic acid) to polyurethane, the pore size of the hybrid electrospun nanofibrous membranes decreased by 47.64%. As a result, compared with pristine polyurethane membranes, hybrid electrospun nanofibrous membranes showed a good (9.6 mm s−1) windproof performance. Adding poly(2-acrylamido-2-methylpropanesulfonic acid) nanofibers to the polyurethane resulted in a decrease in mechanical properties and waterproof performance. The results show that the volume fraction of the poly(2-acrylamido-2-methylpropanesulfonic acid) and the electrospinning scenarios have a great influence on the mechanical properties of the samples. The results also show that the mechanical properties of hybrid electrospun nanofibrous membranes can be predicted based on the geometrical properties of each component. Computational fluid dynamics were used to simulate air flow through a virtual medium and the results of simulation were compared with the experimental measurement and predicted permeability; then, the best models for predicting air permeability were determined. In addition, based on different types of use, duration of use, and relative humidity level, a bi-functional membrane can be obtained by regulating layer arrangement and composition ratios to suit various applications, for example, in medical disposable clothing, wound dressing, filtering industries, and protective clothing.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3