Development of bacterial cellulose nanocomposites: An overview of the synthesis of bacterial cellulose nanocomposites with metallic and metallic-oxide nanoparticles by different methods and techniques for biomedical applications

Author:

Wasim Muhammad1ORCID,Mushtaq Muhammad1ORCID,Khan Saif Ullah2,Farooq Amjad3ORCID,Naeem Muhammad Awais1ORCID,Khan Muhammad Rafique1,Salam Abdul4ORCID,Wei Qufu1

Affiliation:

1. Key Laboratory of Eco Textiles, Jiangnan University, Wuxi, Jiangsu, China

2. Department of Textile Engineering, BUITEMS, Quetta, Balochistan, Pakistan

3. College of Textiles, Donghua University, Shanghai, China

4. Department of Textile & Clothing, National Textile University (Karachi Campus), Karachi, Pakistan

Abstract

Bacterial cellulose is the three-dimensional network structure of nanofibers. The bacterial cellulose materials have outstanding characteristics of high surface area and high crystallinity (84%–89%). It has greater compatibility with the degree of polymerization and has excellent mechanical properties. The water-holding capacity of bacterial cellulose (over 100 ti) makes it stand out from other cellulose materials. This is because bacterial cellulose has high purity due to a lack of lignin and hemicellulose. Bacterial cellulose is considered as a non-cytotoxic, non-genotoxic, and highly biocompatible material, which has broad appeal in the medical field and has attracted widespread attention. The proposed review summarizes the microbial effects of enlisting bacterial strains with carbon sources, and culture media on bacterial cellulose production. In addition, it provides a variety of physical and chemical methods that can be used to modify bacterial cellulose with metal and metal oxide nanoparticles; like the common structure of zinc oxide/bacterial cellulose represent antibacterial characteristics against C.freundii, S.aureus, E.coli, and P.aeruginosa with 90.9%, 94.3%, 90.0%, and 87.4% strength respectively. The wound healing properties of such metallic oxide structure with bacterial cellulose presents the characteristics, which confirms its application in 66% of strength, especially for bionic designs for medical applications, including wound healing and artificial skin, vascular and neurosurgical covering materials, dural prosthesis, arterial stent coating, cartilage, bone repair grafts, and biomedicines. Because of the further exposure of value-added medical material application, our review ends with challenges and perspectives in the production of bacterial cellulose nanocomposite.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3