Synthesis and Antibacterial Activity of Ultrasmall Silver Nanoparticles by Pulsed Laser Ablation in Deionized Water

Author:

Hussein Sarwin Yaseen1,Abbas Tariq Abdul-Hameed1

Affiliation:

1. Department of Physics, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq.

Abstract

Background: The main objective of this work is the synthesis and evaluation of silver nanoparticles (Ag NPs) by using pulsed laser ablation of a silver (Ag) target in deionized water and examining their antibacterial activity. Methods: Colloidal solutions of silver nanoparticles were prepared with different pulsed laser energies (620, 880, and 1000) mJ of wavelength 1064 nm and frequency 10 Hz. To determine their structure, optical, morphology, elemental composition, and infrared spectra, the synthesized Ag NPs were characterized using various high-throughput analytical techniques such as (UVVis) spectroscopy, transmission electron microgram (TEM), electron dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectra, and Zeta potential. Results: The results show that the properties of synthesized Ag NPs depend much more on the laser energy. The laser energy can be used to control the properties of the prepared nanoparticles. Uniform distributions of spherical ultrasmall Ag NPs with an average size of (3) nm were obtained suspended in deionized water, which is the most effective size for antibacterial activity. However, the result indicated that the ablated Ag NPs were stable for 4 months in deionized water. The antibacterial activity of the colloidal solution of synthesized Ag NPs against Gramnegative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria was then examined using the agar-well diffusion method. Conclusion: It was found that the prepared nanoparticles exhibited strong activity against E. coli and S. aureus bacteria growth. The average zones of inhibition of Ag NPs were found to be about (26) mm for E. coli and (32) mm for S. aureus bacteria.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3