The robot butler: How and why should we study predictive algorithms and artificial intelligence (AI) in healthcare?

Author:

Gjødsbøl Iben Mundbjerg1ORCID,Ringgaard Anna Kirstine2,Holm Peter Christoffer3,Brunak Søren34,Bundgaard Henning25

Affiliation:

1. Department of Public Health, Centre for Medical Science and Technology Studies, University of Copenhagen, Copenhagen, Denmark

2. Department of Cardiology, The Heart Center, Copenhagen University Hospital, Copenhagen, Denmark

3. Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark

4. Copenhagen University Hospital, Copenhagen, Denmark

5. Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Abstract

Artificial intelligence (AI) and algorithms are heralded as significant solutions to the widening gap between the rising healthcare needs of ageing and multi-morbid populations and the scarcity of resources to provide such care. Objective This article investigates how the PMHnet algorithm – an AI prognostication tool developed in Denmark to predict the one-year all-cause mortality risk for patients hospitalized with ischemic heart disease – was presented to cardiologists working in the hospital setting, and how they responded to this novel decision-support tool. Methods Empirically, we draw upon ethnographic fieldwork in the Danish-led international research project, PM Heart, which since 2019 has developed the PMHnet algorithm and implemented the software into the electronic health record system in hospitals in Eastern Denmark (the Capital Region and Region Zealand). Results Paying careful attention to the hopes and concerns of cardiologists who will have to embrace and adapt to algorithmic tools in their everyday work of diagnosing and treating patients, we identify three analytical themes meriting attention when AI is implemented in healthcare: 1) the re-negotiation of agency and autonomy in human-algorithm relations, 2) accountability in algorithmic prognostication and 3) the complex relationship between association and causation actualized by predictive algorithms. From these analytical themes, we elicit methodological questions to guide future ethnographic explorations of how AI and advanced algorithms are put to use in the healthcare system, with what implications, and for whom. Conclusion We conclude that local, qualitative investigations of how algorithms are used, embraced and contested in everyday clinical practice are needed in order to understand their implications – good and bad, intended and unintended – for clinicians, patients and healthcare provision.

Funder

NordForsk

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3