Use and performance of machine learning models for type 2 diabetes prediction in clinical and community care settings: Protocol for a systematic review and meta-analysis of predictive modeling studies

Author:

De Silva Kushan1ORCID,Enticott Joanne1,Barton Christopher2,Forbes Andrew3,Saha Sajal2,Nikam Rujuta2ORCID

Affiliation:

1. Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Australia

2. Department of General Practice, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Australia

3. Biostatistics Unit, Division of Research Methodology, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Australia

Abstract

Objective Machine learning involves the use of algorithms without explicit instructions. Of late, machine learning models have been widely applied for the prediction of type 2 diabetes. However, no evidence synthesis of the performance of these prediction models of type 2 diabetes is available. We aim to identify machine learning prediction models for type 2 diabetes in clinical and community care settings and determine their predictive performance. Methods The systematic review of English language machine learning predictive modeling studies in 12 databases will be conducted. Studies predicting type 2 diabetes in predefined clinical or community settings are eligible. Standard CHARMS and TRIPOD guidelines will guide data extraction. Methodological quality will be assessed using a predefined risk of bias assessment tool. The extent of validation will be categorized by Reilly–Evans levels. Primary outcomes include model performance metrics of discrimination ability, calibration, and classification accuracy. Secondary outcomes include candidate predictors, algorithms used, level of validation, and intended use of models. The random-effects meta-analysis of c-indices will be performed to evaluate discrimination abilities. The c-indices will be pooled per prediction model, per model type, and per algorithm. Publication bias will be assessed through funnel plots and regression tests. Sensitivity analysis will be conducted to estimate the effects of study quality and missing data on primary outcome. The sources of heterogeneity will be assessed through meta-regression. Subgroup analyses will be performed for primary outcomes. Ethics and dissemination No ethics approval is required, as no primary or personal data are collected. Findings will be disseminated through scientific sessions and peer-reviewed journals. PROSPERO registration number CRD42019130886

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3