Predicting three-month fasting blood glucose and glycated hemoglobin changes in patients with type 2 diabetes mellitus based on multiple machine learning algorithms

Author:

Tao Xue,Jiang Min,Liu Yumeng,Hu Qi,Zhu Baoqiang,Hu Jiaqiang,Guo Wenmei,Wu Xingwei,Xiong Yu,Shi Xia,Zhang Xueli,Han Xu,Li Wenyuan,Tong Rongsheng,Long Enwu

Abstract

AbstractFasting blood glucose (FBG) and glycosylated hemoglobin (HbA1c) are key indicators reflecting blood glucose control in type 2 diabetes mellitus (T2DM) patients. The purpose of this study is to establish a predictive model for blood glucose changes in T2DM patients after 3 months of treatment, achieving personalized treatment.A retrospective study was conducted on type 2 diabetes mellitus real-world medical data from 4 cities in Sichuan Province, China from January 2015 to December 2020. After data preprocessing, data inputting, data sampling, and feature screening, 16 kinds of machine learning methods were used to construct prediction models, and 5 prediction models with the best prediction performance were screened respectively. A total of 100,000 cases were included to establish the FBG model, and 2,169 cases were established to establish the HbA1c model. The best prediction model both of FBG and HbA1c finally obtained are realized by ensemble learning and modified random forest inputting, the AUC values are 0.819 and 0.970, respectively. The most important indicators of the FBG and HbA1c prediction model were FBG and HbA1c. Medication compliance, follow-up outcome, dietary habits, BMI, and waist circumference also had a greater impact on FBG levels. The prediction accuracy of the models of the two blood glucose control indicators is high and has certain clinical applicability.HbA1c and FBG are mutually important predictors, and there is a close relationship between them.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Sichuan Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3