Affiliation:
1. Department of Communications and New Media, Faculty of Arts and Social Sciences, National University of Singapore, Singapore
Abstract
ObjectiveThis study explores how negative affect, perceived net equity, and uncertainty influence the public's privacy decision-making regarding the adoption of contact-tracing technology based on artificial intelligence (AI) during the COVID-19 pandemic.MethodsFour hundred and eighteen adults in the US participated in the study via Amazon Mechanical Turk in August 2020. Statistical analyses were performed using the PROCESS macro. Indirect effects and their significance were estimated using bias-corrected bootstrap confidence intervals (CIs) with resampling set to n = 5000.ResultsPerceived net equity was positively associated with low levels of perceived uncertainty regarding a COVID-19 contact-tracing application and intention to adopt it. Low levels of perceived uncertainty were positively associated with intentions to adopt such an application, thereby suggesting that a perceived level of uncertainty mediates the association between perceived net equity and adoption intentions. Anxieties regarding AI technology and COVID-19 risks both moderate the associations among perceived net equity, perceived level of uncertainty, and intentions to adopt the contact-tracing technology.ConclusionsOur findings highlight how the differing sources of emotion influence the associations among rational judgment, perceptions, and decision-making about new contact-tracing technology. Overall, the results suggest that both rational judgments and affective reactions to risks are important influencers of individuals’ perceptions and privacy-related decision-making regarding a new health technology during the pandemic.
Funder
National University of Singapore
Subject
Health Information Management,Computer Science Applications,Health Informatics,Health Policy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献