Affiliation:
1. Institute of Public Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
Abstract
Background During the COVID-19 pandemic, telephone hotlines of local health authorities in Germany were overloaded due to information requests by the public. Objective Evaluating the use of a COVID-19-specific voicebot (CovBot) in local health authorities in Germany during the COVID-19 pandemic. This study investigates the performance of the CovBot by assessing a perceptible relief of staff in the hotline service. Methods This prospective mixed-methods study enrolled local health authorities in Germany from 01 February 2021 to 11 February 2022 to deploy the CovBot, which was mainly designed to answer frequently asked questions. To capture the user perspective and acceptance, we performed semistructured interviews and online surveys with their staff, conducted an online survey among callers, and analyzed the performance metrics of the CovBot. Results The CovBot was implemented in 20 local health authorities serving 6.1 million German citizens and processed almost 1.2 million calls during the study period. The overall assessment was that the CovBot contributed to a perceived relief of the hotline service. In a survey among callers, 79% indicated that a voicebot could not replace a human. The analyzed anonymous metadata revealed that 15% of calls hung up immediately, 32% after hearing an FAQ answer, and 51% of calls were forwarded to the local health authority offices. Conclusions A voicebot primarily answering FAQs can provide additional support to relieve the hotline service of local health authorities in Germany during the COVID-19 pandemic. For complex concerns, a forwarding option to a human proved to be an essential functionality.
Funder
Bundesministerium für Gesundheit
Subject
Health Information Management,Computer Science Applications,Health Informatics,Health Policy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Using Large Language Models for Adaptive Dialogue Management in Digital Telephone Assistants;Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization;2024-06-27