Diabetes prediction model for unbalanced community follow-up data set based on optimal feature selection and scorecard

Author:

Jiang Liangjun1,Yang Zerui2,Wang Donghai3,Gong Haimei1,Li Juan4,Wang Jing5,Wang Lei1ORCID

Affiliation:

1. College of Information and Communication Engineering, State Key Lab of Marine Resource Utilisation in South China Sea, Hainan University, Haikou, China

2. Electronics & Information School, Yangtze University, Jingzhou, China

3. Shenzhen Center for Disease Control and Prevention, Shenzhen, China

4. Haizhu District Community Health Development Guidance Center, Guangzhou, China

5. Shenzhen E-link Wisdom Co., Ltd, Shenzhen, China

Abstract

Objectives Diabetes is a metabolic disease and early detection is crucial to ensuring a healthy life for people with prediabetes. Community care plays an important role in public health, but the association between community follow-up of key life characteristics and diabetes risk remains unclear. Based on the method of optimal feature selection and risk scorecard, follow-up data of diabetes patients are modeled to assess diabetes risk. Methods We conducted a study on the diabetes risk assessment model and risk scorecard using follow-up data from diabetes patients in Haizhu District, Guangzhou, from 2016 to 2023. The raw data underwent preprocessing and imbalance handling. Subsequently, features relevant to diabetes were selected and optimized to determine the optimal subset of features associated with community follow-up and diabetes risk. We established the diabetes risk assessment model. Furthermore, for a comprehensible and interpretable risk expression, the Weight of Evidence transformation method was applied to features. The transformed features were discretized using the quantile binning method to design the risk scorecard, mapping the model's output to five risk levels. Results In constructing the diabetes risk assessment model, the Random Forest classifier achieved the highest accuracy. The risk scorecard obtained an accuracy of 85.16%, precision of 87.30%, recall of 80.26%, and an F1 score of 83.27% on the unbalanced research dataset. The performance loss compared to the diabetes risk assessment model was minimal, suggesting that the binning method used for constructing the diabetes risk scorecard is reasonable, with very low feature information loss. Conclusion The methods provided in this article demonstrate effectiveness and reliability in the assessment of diabetes risk. The assessment model and scorecard can be directly applied to community doctors for large-scale risk identification and early warning and can also be used for individual self-examination to reduce risk factor levels.

Funder

Hainan Province Science and Technology Special Fund

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3