Prediction of type 2 diabetes mellitus using hematological factors based on machine learning approaches: a cohort study analysis

Author:

Mansoori Amin,Sahranavard Toktam,Hosseini Zeinab Sadat,Soflaei Sara Saffar,Emrani Negar,Nazar Eisa,Gharizadeh Melika,Khorasanchi Zahra,Effati Sohrab,Ghamsary Mark,Ferns Gordon,Esmaily Habibollah,Mobarhan Majid Ghayour

Abstract

AbstractType 2 Diabetes Mellitus (T2DM) is a significant public health problem globally. The diagnosis and management of diabetes are critical to reduce the diabetes complications including cardiovascular disease and cancer. This study was designed to assess the potential association between T2DM and routinely measured hematological parameters. This study was a subsample of 9000 adults aged 35–65 years recruited as part of Mashhad stroke and heart atherosclerotic disorder (MASHAD) cohort study. Machine learning techniques including logistic regression (LR), decision tree (DT) and bootstrap forest (BF) algorithms were applied to analyze data. All data analyses were performed using SPSS version 22 and SAS JMP Pro version 13 at a significant level of 0.05. Based on the performance indices, the BF model gave high accuracy, precision, specificity, and AUC. Previous studies suggested the positive relationship of triglyceride-glucose (TyG) index with T2DM, so we considered the association of TyG index with hematological factors. We found this association was aligned with their results regarding T2DM, except MCHC. The most effective factors in the BF model were age and WBC (white blood cell). The BF model represented a better performance to predict T2DM. Our model provides valuable information to predict T2DM like age and WBC.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3