Artificial intelligence (AI) in restorative dentistry: Performance of AI models designed for detection of interproximal carious lesions on primary and permanent dentition

Author:

Azhari Amr Ahmed1ORCID,Helal Narmin2,Sabri Leena M3,Abduljawad Abeer3

Affiliation:

1. Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia

2. Department of Pediatric Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia

3. Internship Training Program, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

Objective The objective of this study was to evaluate the effectiveness of deep learning methods in detecting dental caries from radiographic images. Methods A total of 771 bitewing radiographs were divided into two groups: adult (n = 554) and pediatric (n = 217). Two distinct semantic segmentation models were constructed for each group. They were manually labeled by general dentists for semantic segmentation. The inter-examiner reliability of the two examiners was also measured. Finally, the models were trained using transfer learning methodology along with computer science advanced tools, such as ensemble U-Nets with ResNet50, ResNext101, and Vgg19 as the encoders, which were all pretrained on ImageNet weights using a training dataset. Results Intersection over union (IoU) score was used to evaluate the outcomes of the deep learning model. For the adult dataset, the IoU averaged 98%, 23%, 19%, and 51% for zero, primary, moderate, and advanced carious lesions, respectively. For pediatric bitewings, the IoU averaged 97%, 8%, 17%, and 25% for zero, primary, moderate, and advanced caries, respectively. Advanced caries was more accurately detected than primary caries on adults and pediatric bitewings P < 0.05. Conclusions The proposed deep learning models can accurately detect advanced caries in permanent or primary bitewing radiographs. Misclassification mostly occurs between primary and moderate caries. Although the model performed well in correctly classifying the lesions, it can misclassify one as the other or does not accurately capture the depth of the lesion at this early stage.

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3