Caries and Restoration Detection Using Bitewing Film Based on Transfer Learning with CNNs

Author:

Mao Yi-Cheng,Chen Tsung-Yi,Chou He-Sheng,Lin Szu-Yin,Liu Sheng-Yu,Chen Yu-An,Liu Yu-Lin,Chen Chiung-An,Huang Yen-Cheng,Chen Shih-LunORCID,Li Chun-Wei,Abu Patricia Angela R.ORCID,Chiang Wei-YuanORCID

Abstract

Caries is a dental disease caused by bacterial infection. If the cause of the caries is detected early, the treatment will be relatively easy, which in turn prevents caries from spreading. The current common procedure of dentists is to first perform radiographic examination on the patient and mark the lesions manually. However, the work of judging lesions and markings requires professional experience and is very time-consuming and repetitive. Taking advantage of the rapid development of artificial intelligence imaging research and technical methods will help dentists make accurate markings and improve medical treatments. It can also shorten the judgment time of professionals. In addition to the use of Gaussian high-pass filter and Otsu’s threshold image enhancement technology, this research solves the problem that the original cutting technology cannot extract certain single teeth, and it proposes a caries and lesions area analysis model based on convolutional neural networks (CNN), which can identify caries and restorations from the bitewing images. Moreover, it provides dentists with more accurate objective judgment data to achieve the purpose of automatic diagnosis and treatment planning as a technology for assisting precision medicine. A standardized database established following a defined set of steps is also proposed in this study. There are three main steps to generate the image of a single tooth from a bitewing image, which can increase the accuracy of the analysis model. The steps include (1) preprocessing of the dental image to obtain a high-quality binarization, (2) a dental image cropping procedure to obtain individually separated tooth samples, and (3) a dental image masking step which masks the fine broken teeth from the sample and enhances the quality of the training. Among the current four common neural networks, namely, AlexNet, GoogleNet, Vgg19, and ResNet50, experimental results show that the proposed AlexNet model in this study for restoration and caries judgments has an accuracy as high as 95.56% and 90.30%, respectively. These are promising results that lead to the possibility of developing an automatic judgment method of bitewing film.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3