Diagnostic accuracy of dental caries detection using ensemble techniques in deep learning with intraoral camera images

Author:

Kang Sohee,Shon Byungeun,Park Eun Young,Jeong Sungmoon,Kim Eun-KyongORCID

Abstract

Camera image-based deep learning (DL) techniques have achieved promising results in dental caries screening. To apply the intraoral camera image-based DL technique for dental caries detection and assess its diagnostic performance, we employed the ensemble technique in the image classification task. 2,682 intraoral camera images were used as the dataset for image classification according to dental caries presence and caries-lesion localization using DL models such as ResNet-50, Inception-v3, Inception-ResNet-v2, and Faster R-convolutional neural network according to diagnostic study design. 534 participants whose mean age [SD] was 47.67 [±13.94] years were enrolled. The dataset was divided into training (56.0%), validation (14.0%), and test subset (30.0%) annotated by one experienced dentist as a reference standard about dental caries detection and lesion location. The confusion matrix, area under the receiver operating characteristic curve (AUROC), and average precision (AP) were evaluated for performance analysis. In the end-to-end dental caries image classification, the ensemble DL models had consistently improved performance, in which as the best results, the ensemble model of Inception-ResNet-v2 achieved 0.94 of AUROC and 0.97 of AP. On the other hand, the explainable model achieved 0.91 of AUROC and 0.96 of AP after the ensemble application. For dental caries classification using intraoral camera images, the application of ensemble techniques exhibited consistently improved performance regardless of the DL models. Furthermore, the trial to create an explainable DL model based on carious lesion detection yielded favorable results.

Funder

National Research Foundation of Korea

Yeungnam University

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3