Enhancing elderly care: Efficient and reliable real-time fall detection algorithm

Author:

Wang Yue1,Deng Tiantai1ORCID

Affiliation:

1. Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, UK

Abstract

Background and Objective Falls pose a significant risk to public health, especially for the elderly population, and could potentially result in severe injuries or even death. A reliable fall detection system is urgently needed to recognise and promptly alert to falls effectively. A vision-based fall detection system has the advantage of being non-invasive and affordable compared with another popular approach using wearable sensors. Nevertheless, the present challenge lies in the algorithm's limited on-device operating speed due to extremely high computational demands, and the high computational demands are usually essential to improve the performance for the complex scene. Therefore, it is crucial to address the above challenge in computational power and complex scenes. Methods This article presents the implementation of a real-time fall detection algorithm with low computational costs using a single webcam. The suggested method optimises precision and efficiency by synthesising the strengths of background subtraction and the human pose estimation model BlazePose. The biomechanical features, derived from body key points identified by BlazePose, are utilised in a random forest model for classifying fall events. Results The proposed algorithm achieves 89.99% accuracy and 29.7 FPS with a laptop CPU on the UR Fall Detection dataset and the Le2i Fall Detection dataset. The algorithm shows great generalisation and robustness in different scenarios. Conclusion Due to the low computational power of the system, the findings also suggest the potential for implementing the system in small-scale medical monitoring equipment, which maximises its practical value in digital health.

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3