Integrating Experimental and Analytic Approaches to Improve Data Quality in Genome-wide RNAi Screens

Author:

Zhang Xiaohua Douglas1,Espeseth Amy S.2,Johnson Eric N.3,Chin Jayne4,Gates Adam5,Mitnaul Lyndon J.4,Marine Shane D.3,Tian Jenny4,Stec Eric M.3,Kunapuli Priya3,Holder Dan J.6,Heyse Joseph F.7,Strulovici Berta3,Ferrer Marc3

Affiliation:

1. Biometrics Research, Merck Research Laboratories, West Point, Pennsylvania,

2. RNA Therapeutics, Merck Research Laboratories, West Point, Pennsylvania

3. Automated Biotechnology, Merck Research Laboratories, North Wales, Pennsylvania

4. Cardiovascular Diseases, Merck Research Laboratories, Rahway, New Jersey

5. Antiviral Research, Merck Research Laboratories, West Point, Pennsylvania

6. Biometrics Research, Merck Research Laboratories, West Point, Pennsylvania

7. BARDS, Merck Research Laboratories, West Point, Pennsylvania

Abstract

RNA interference (RNAi) not only plays an important role in drug discovery but can also be developed directly into drugs. RNAi high-throughput screening (HTS) biotechnology allows us to conduct genome-wide RNAi research. A central challenge in genome-wide RNAi research is to integrate both experimental and computational approaches to obtain high quality RNAi HTS assays. Based on our daily practice in RNAi HTS experiments, we propose the implementation of 3 experimental and analytic processes to improve the quality of data from RNAi HTS biotechnology: (1) select effective biological controls; (2) adopt appropriate plate designs to display and/or adjust for systematic errors of measurement; and (3) use effective analytic metrics to assess data quality. The applications in 5 real RNAi HTS experiments demonstrate the effectiveness of integrating these processes to improve data quality. Due to the effectiveness in improving data quality in RNAi HTS experiments, the methods and guidelines contained in the 3 experimental and analytic processes are likely to have broad utility in genome-wide RNAi research. ( Journal of Biomolecular Screening 2008:378-389)

Publisher

Elsevier BV

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3