Issues of Z-factor and an approach to avoid them for quality control in high-throughput screening studies

Author:

Zhang Xiaohua Douglas1ORCID,Wang Dandan1,Sun Shixue1,Zhang Heping2

Affiliation:

1. CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China

2. Department of Biostatistics, Yale University, New Haven, CT 06511, USA

Abstract

Abstract Motivation High-throughput screening (HTS) is a vital automation technology in biomedical research in both industry and academia. The well-known Z-factor has been widely used as a gatekeeper to assure assay quality in an HTS study. However, many researchers and users may not have realized that Z-factor has major issues. Results In this article, the following four major issues are explored and demonstrated so that researchers may use the Z-factor appropriately. First, the Z-factor violates the Pythagorean theorem of statistics. Second, there is no adjustment of sampling error in the application of the Z-factor for quality control (QC) in HTS studies. Third, the expectation of the sample-based Z-factor does not exist. Fourth, the thresholds in the Z-factor-based criterion lack a theoretical basis. Here, an approach to avoid these issues was proposed and new QC criteria under homoscedasticity were constructed so that researchers can choose a statistically grounded criterion for QC in the HTS studies. We implemented this approach in an R package and demonstrated its utility in multiple CRISPR/CAS9 or siRNA HTS studies. Availability and implementation The R package qcSSMDhomo is freely available from GitHub: https://github.com/Karena6688/qcSSMDhomo. The file qcSSMDhomo_1.0.0.tar.gz (for Windows) containing qcSSMDhomo is also available at Bioinformatics online. qcSSMDhomo is distributed under the GNU General Public License. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

University of Macau

The Science and Technology Development Fund

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference20 articles.

1. Academic screening goes high-throughput;Baker;Nat. Methods,2010

2. Does not need to be > 0.5;Bar;SLAS Discov,2020

3. Properties of sufficiency and statistical tests;Bartlett;Proc. R. Soc. London Series A,1937

4. A revolution in drug discovery. Combinatorial chemistry still needs logic to drive science forward;Beeley;BMJ,2000

5. Statistical methods for analysis of high-throughput RNA interference screens;Birmingham;Nat. Methods,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3