Affiliation:
1. Department of Pharmaceutical Chemistry, University of California, San Francisco
Abstract
Motivated by their participation in the McMaster Data-Mining and Docking Competition, the authors developed 2 new computational technologies and applied them to docking against Escherichia coli dihydrofolate reductase: a receptor preparation procedure that incorporates rotamer optimization of side chains and a physics-based rescoring procedure for estimating relative binding affinities of the protein-ligand complexes. Both methods use the same energy function, consisting of the all-atom OPLS-AA force field and a generalized Born solvent model, which treats the protein receptor and small-molecule ligands in a consistent manner. Thus, the energy function is similar to that used in more sophisticated approaches, such as free-energy perturbation and the molecular mechanics Poisson-Boltzmann/surface area, but sampling during the rescoring procedure is limited to simple energy minimization of the ligand. The use of a highly efficient minimization algorithm permitted the authors to apply this rescoring procedure to hundreds of thousands of protein-ligand complexes during the competition, using a modest Linux cluster. To test these methods, they used the 12 competitive inhibitors identified in the training set, plus methotrexate, as positive controls in enrichment studies with both the training and test sets, each containing 50,000 compounds. The key conclusion is that combining the receptor preparation and rescoring methods makes it possible to identify most of the positive controls within the top few tenths of a percent of the rank-ordered training and test set libraries.
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献