Automatic 3D Cell Analysis in High-Throughput Microarray Using Micropillar and Microwell Chips

Author:

Lee Dong Woo1,Lee Moo-Yeal2,Ku Bosung1,Nam Do-Hyun34

Affiliation:

1. Central R&D Institute, Samsung Electro-Mechanics Co., Ltd., Suwon, Republic of Korea

2. Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA

3. Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

4. Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea

Abstract

Area-based and intensity-based 3D cell viability measurement methods are compared in high-throughput screening in order to analyze their effects on the assay results (doubling time and IC50) and their repeatability. Many other 3D cell-based high-throughput screening platforms had been previously introduced, but these had not clearly addressed the effects of the two methods on the assay results and assay repeatability. In this study, the optimal way to analyze 3D cultured cells is achieved by comparing day-to-day data of doubling times and IC50 values obtained from the two methods. In experiments, the U251 cell line is grown in chips. The doubling time, based on the area of the 3D cells, was 27.8 ± 1.8 h (standard deviation: 6.6%) and 27.8 ± 3.8 h (standard deviation: 13.7%) based on the intensity of the 3D cells. The doubling time calculated by area shows a smaller standard deviation than one calculated by intensity. IC50 values calculated by both methods are very similar. The standard deviations of IC50 values for the two methods were within ±3-fold. The IC50 variations of the 12 compounds were similar regardless of the viability measurement methods and were highly related to the shape of the dose–response curves.

Publisher

Elsevier BV

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3