Affiliation:
1. College of Mechanical Engineering, Anhui University of Science & Technology, Huainan, P.R. China
2. Anhui Key Laboratory of Mine Intelligent Equipment and Technology, Anhui University of Science & Technology, Huainan, P.R. China
Abstract
To study the dynamic compression and tensile mechanical behaviors of a bicomponent epoxy resin matrix composites, which were filled with a semi-crystalline thermoplastic Polyether-ether ketone (PAEK-C) resin, at high strain rate, the dynamic compression and tensile experiments were carried out on a modified split Hopkinson pressure bar (SHPB) and high speed material apparatus, respectively. Stress-strain curves of the epoxy resin matrix composites were obtained and analyzed. Damage mechanism under high strain rate was characterized through the scanning electron microscope (SEM) observation. Results of the dynamic compression tests indicated that, although the effects of strain rate remarkably influenced the variations in stress, the behaviors of the epoxy resin matrix played a more significant role than strain rate in the determination of the high strain rate. It was reflected through increased ductility of the samples and reduced slope of the stress-strain curves. The dynamic impact tensile tests results show that, PAEK-C fillers exhibited dramatic toughening effect. The increase of the volume fraction of PAEK-C rich phase inevitably forces the crack to overcome more tearing deformation of PAEK-C rich phase. At the same time, the enhancement of plastic capacity may also induce a larger range of cooperative deformation at the crack tip.
Funder
the Anhui provincial Natural Science Foundation of P.R.C
the National Natural Science Foundation of P.R.C
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献