Redesign of casing treatment for a transonic centrifugal compressor based on a hybrid global optimization method

Author:

Li Xiaojian1ORCID,Liu Zhengxian1ORCID,Zhao Yijia2

Affiliation:

1. Department of Mechanics, Tianjin University, Tianjin, China

2. School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, China

Abstract

As a typical black-box problem, recirculating casing treatment (RCT) optimization of compressor stages is computationally intensive and time consuming, even though surrogate models are usually employed. In order to improve efficiency and robustness of the optimization, an expected-improvement (EI) based hybrid global optimization (EHGO) algorithm is developed by coupling an EI-based surrogate model with a hybrid optimization algorithm. Highly nonlinear and multiple modality mathematical tests show that the EHGO algorithm is able to create a high-fidelity surrogate model near targeted regions with less evaluated samples, and to obtain the global optimal solution simultaneously. The RCT of a compressor stage is optimized based on this algorithm. The number of CFD simulations required for obtaining an optimum solution is greatly reduced, as compared to similar studies using conventional methods. The optimization results show that the aerodynamic performance is improved over the whole speed line and the flow range is also extended. The dominant factors for the performance improvements and the enhanced stall margin are addressed by analyzing the local flow characteristics before and after optimization. It is found that those factors include: removing a larger amount of low-momentum fluid, achieving a more uniform flow of impeller passage in circumferential direction, and reducing the radial distortion of impeller inlet flow. The proposed algorithm has the potential to considerably speed up the optimization process and make the optimization much more accessible. It can be generalized to deal with other computationally intensive black-box problems, for example, turbomachinery optimization.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3