Singularity analysis and avoidance of a planar parallel mechanism with kinematic redundancy under a fixed orientation

Author:

Qu Haibo12,Hu Lanqing1,Guo Sheng12

Affiliation:

1. Robotics Research Center, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, China

2. Key Laboratory of Vehicle Advanced Manufacturing, Measuring and Control Technology, Ministry of Education, Beijing Jiaotong University, Beijing, China

Abstract

In this paper, the singularity of a planar mechanism with kinematic redundancy is studied. First, the architecture of the mechanism and the concept schematic diagram for singularity avoidance are stated. Next, inverse kinematics model of the planar parallel mechanism with kinematic redundancy is established. For determining the unique inverse solution of the mechanism under certain initial installation configuration, a comparison analysis based on the strategy tree and the virtual prototype is performed. Then, based on the obtained Jacobian matrices and the singular condition, the workspace-singularity map and two singular configurations of the mechanism are drawn. Finally, with the obtained workspace-singularity map, a singularity-free transition layer and an aisle can be found to perform to singularity avoidance, even if the initial designed trajectory passing through the second kind of singularity. Three tasks are carried out to illustrate that the workspace boundary and singular configuration can be changed by adjusting the kinematic redundant actuated parameter.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3