The multi-component coupling horizontal vibration modeling technology of the high-speed elevator and analysis of its influencing factors

Author:

Zhou Huifang1,Zhang Shuyou1,Qiu Lemiao1ORCID,Wang Zili1ORCID,Li Heng1ORCID

Affiliation:

1. State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, China

Abstract

Horizontal vibration of a high-speed elevator can seriously influence the safety, stability, and ride comfort of the elevator during the operation. The construction of an accurate and robust dynamic model for horizontal vibration is the key to vibration control and suppression. In this article, the modeling and influencing factor analysis of the horizontal vibration of the high-speed elevator car are performed considering multi-component coupling. The rigid flexible coupling of the traction ropes and the elevator car system, the rigid irregularity perturbation generated by the manufacturing and installation errors of the guide rails, and the vibration inconsistency between the elevator car and car frame are considered in the modeling process. Based on the coupling system of the traction rope, elevator car, elevator car frame, guide rails, and rolling guide shoes, the kinematic horizontal vibration equation is established by using the generalized Hamilton’s principle. The solution of the horizontal vibration of the elevator car is derived based on the Galerkin method and MATLAB/Simulink software, and the influence of the perturbation frequency, irregularity perturbation type, and operating velocity on the horizontal vibration of the elevator car is analyzed. The KLK2 high-speed elevator is taken as a case study. Compared with the measured data, the mean absolute percentage error (MAPE) of the proposed model for maximum peak-to-peak (max [Formula: see text]) and [Formula: see text] peak-to-peak ([Formula: see text] [Formula: see text]) of the horizontal vibration acceleration is 6.08% and 5.16%, respectively, while the MAPE of a four degree-of-freedom model for the two is 16.74% and 7.35% and the MAPE of a distributed-parameter model for the two is 10.66% and 6.97%, respectively. The effectiveness of the proposed model is verified.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3