Effects of cutting speed on phase changes in ultra-precision raster milling of Zn–Al alloy

Author:

Zhang SJ12,To S2,Rao XX1

Affiliation:

1. Research Institute of Mechanical Manufacturing Engineering, School of Mechatronics Engineering, Nanchang University, Nanchang, PR China

2. State Key Laboratory of Ultra-precision Machining Technology, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, PR China

Abstract

Ultra-precision raster milling induces external stress to cause phase changes of Zn–Al alloy at a thin surface layer, which further degrade surface integrity of high-precision components. This study focuses on discussing phase changes at the surfaces of the alloy after ultra-precision raster milling under the high cutting speeds of 680 m/min, 1120 m/min, and 1360 m/min. Along with the penetration depth at the machined surfaces, phase changes and surface hardening rapidly declined to vanish with crystal orientation shift back to its standard Bragg angle. As the cutting speeds increased, phase changes, crystal orientation shift, and surface hardening obviously decreased with phase change thicknesses from 323 nm, 241 nm to 87 nm. It is worth noticing that at a high cutting speed phase changes at the machined surface can be greatly reduced to a significant degree.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation on the optimal ultra-precision machining of nitriding mold steel by in-situ laser assisted diamond cutting;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2024-03-07

2. Surface integrity under diamond tool wear effects in ultra-precision raster milling of a Zn–Al–Cu alloy;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2018-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3