Affiliation:
1. Kırklareli University, Technology Faculty, Mechatronic Eng., Kırklareli, Turkey
2. Faculty of Engineering and Architecture, Trakya University, Edirne, Turkey
Abstract
This study has been carried out in order to measure friction coefficient of friction materials used in autos through computer program. Variants such as speed, temperature, and pressure have been discussed and the effect of these variants on friction materials of autos. Variants such as speed, temperature, and pressure resulting from various effects in autos have been discussed, the effects of these variants on friction materials have been examined and their friction coefficients have been detected. In the test device whose manufacturing has been completed, temperature value between surface of brake lining and disc used during tests a machinery has been prepared in a way that temperature values are 0–400 ℃, speed values are 0–1400 rev/min, pressure values are 0–1.05 Mpa. In consideration of these dates, it has become possible to constitute friction coefficient–temperature, friction–time and temperature–time diagrams. By benefiting from the tests to be performed through friction coefficient test device, enhancement or progress will be ensured in material selection, technology and theory. Control pf parameters such as speed, temperature, pressure, force, and friction coefficient to be measured are performed easily through test device; moreover, thanks to electronically sensitivity of electronically and mechanical materials used in test device, it is ensured that you can reach the values you want to reach correctly. Friction tests have been carried out on samples having different properties in auto regulative test device. Friction coefficient values of automotive brake linings in the new system design and manufacturing which is carried out, have been in conformity with SAE-J661 Standard and TSE 555-9076 Standard (Turkish Standards Institution). Test results obtained are in parallel with the literature.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献