Mechanical characterization and postbuckling behavior of carbon nanotube–carbon fiber reinforced nanocomposite laminate

Author:

Srivastava Ashish1,Kumar Dinesh1

Affiliation:

1. Department of Mechanical Engineering, Malaviya National Institute of Technology, Jaipur, India

Abstract

The aim of this study is to investigate the effect of carbon nanotube reinforcement in conventional carbon fiber reinforced composite on the buckling and postbuckling behavior of the laminated nanocomposite plate made of carbon nanotube and carbon fiber reinforcements in a matrix material. The method of representative volume element is utilized to perform the multiscale modeling of the problem. Initially, Boolean-based random sequential adsorption algorithm is utilized to model a nanoscale representative volume element of nanocomposite material to mimic the effect of randomly distributed (i.e. having random orientation and position) carbon nanotubes in a matrix material. After estimating the elastic properties of the nanocomposite material using representative volume element, another microscale representative volume element of carbon fiber reinforced in the nanocomposite (i.e. carbon nanotube reinforced matrix material) is modeled to evaluate the stiffness properties of the lamina formed of carbon nanotube–carbon fiber reinforced nanocomposite. The laminae are further stacked in the sequence of (45°/−45°/−45°/45°) to model a laminate. Thereafter, the evaluated stiffness properties of the lamina are employed to predict the effect of carbon nanotube reinforcement on buckling and postbuckling behavior of the laminated plates through nonlinear finite element method formulation based on the first-order shear deformation theory and von Karman’s assumptions. It is established that carbon nanotube reinforcement in carbon fiber reinforced composite lamina results in the enhancement of stiffness properties of the resulting carbon nanotube–fiber nanocomposite lamina, with more prevalent effect on the matrix-dominated properties—transverse and shear moduli—than the axial modulus. The increased stiffness properties result in the substantial improvement in the buckling load and postbuckling strength of the laminated plate made of carbon nanotube–carbon fiber nanocomposite material, for all volume fractions of carbon nanotube, loading and boundary conditions, geometric parameters (i.e. aspect ratio and width-to-thickness ratio), and matrix materials.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Continuum Modelling of Carbon Nanotube Composites: A Review;Proceedings in Technology Transfer;2023-10-18

2. Effect of porosity on the stress–strain response of aluminium nanocomposites: a multiscale approach;International Journal on Interactive Design and Manufacturing (IJIDeM);2022-10-28

3. Machinability of squeeze cast (TiB2+CNT)/Al 7075 metal matrix nano-composite during EDM with untreated and cryogenic treated Cu electrodes: A comparative study;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-07-29

4. Elastic modulus and Poisson’s ratio of graphene nanoplatelet/glass fiber-reinforced polymer hybrid composites subjected to off-axis loading;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-04-17

5. Size-dependent vibrational behavior of embedded spinning tubes under gravitational load in hygro-thermo-magnetic fields;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3