Size-dependent vibrational behavior of embedded spinning tubes under gravitational load in hygro-thermo-magnetic fields

Author:

Lingling Liu1,Ruonan Ma2,Koochakianfard Omid3

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan Polytechnic University, Hubei, China

2. School of Civil Engineering, Guangzhou University, Guangdong, China

3. Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

In the present investigation, with the aim of performance improvement of size-dependent bi-gyroscopic structures, the vibrational behavior of spinning small-scale tunes conveying fluid embedded in various foundations subjected to distributed tangential load and hygro-thermo-magnetic environments by including gravitational effect is investigated. The modified couple stress theory is used to study the microscale tube, and the modified nonlocal theory is utilized to model the nanoscale tubes. A parametric investigation is also conducted to highlight the impacts of various key factors such as gravity, flow profile modification factor, fluid velocity, spinning speed, substrate coefficients, boundary conditions, size-dependent parameters, and environmental attacks on divergence and flutter thresholds of the structure. The dynamical equations are solved using Laplace transformation as well as Galerkin discretization techniques, and forward and backward frequencies are identified accordingly. Meanwhile, the instability borders of the system are obtained analytically. Campbell and stability diagrams, and the time history of the system, are acquired. The results revealed that contrary to influences of gravity, magnetization, and size-dependent parameters, the compressive tangential load and humidity have decreasing effects on the vibrational frequencies and make the system prone to experience static and dynamical instabilities. Moreover, it is determined that applying the viscous foundation eliminates the re-stabilization zone in the system stability evolution, and after the occurrence of the divergence phenomenon, the system immediately undergoes the flutter instability.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3