Moore–Gibson–Thompson Thermoelastic Model Effect of Laser-Induced Microstructures of a Microbeam Sitting on Visco-Pasternak Foundations

Author:

Abouelregal Ahmed E.ORCID,Dassios Ioannis,Moaaz Osama

Abstract

Due to the intricacy of this topic, the thermal study of microstructures on triple-parameter foundations subjected to ultrafast laser pulses has not received much attention. It is necessary to determine the thermal performance of a structure to examine the thermoelastic properties that are caused by a heat source that is generated by a laser pulse. In this paper, the framework of a microscale beam is presented; it was exposed to harmonically fluctuating heat and rested on a visco-Pasternak base under the impact of axial stress. The Euler-Bernoulli beam model was used for this objective, and a very short laser pulse heated the medium. In addition, the Moore–Gibson–Thompson (MGT) non-Fourier thermoelastic theory was used to attempt to explain the thermal variables of the system, and the equations regulating the vibration of thermo-elastic microbeams were then constructed. A semi-analytical strategy is described to examine the properties of the studied field variables. This methodology uses the Laplace transform as well as an approximate computational method for inverse transformations. The influences of the operative parameters on the thermal deflection, axial thermal stress, displacement fields, and temperature change are presented. These effects include damping constants, laser pulses, and the stiffness of viscoelastic and elastic foundations. In addition, the results that were found were compared with previous literature in order to validate the derived model. Finally, more computational outcomes are presented to study the properties of different temperature factors including in the MGT thermoelastic model.

Funder

Sustainable Energy Authority of Ireland

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3