Experimental and numerical analysis of the unsteady influence of the inlet guide vanes on cavitation performance of an axial pump

Author:

Guo Zhiwei1,Pan Jingye1,Qian Zhongdong1,Ji Bin1

Affiliation:

1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, PR China

Abstract

The effect of the inlet guide vanes on cavitation performance of an axial pump is investigated to assess the mechanism for cavitation in pumps and improve their cavitation performance. The effect of inlet guide vane angles on cavitation performance was assessed experimentally, and computational fluid dynamics was used to analyze the inner flow field of the axial pump and to probe the cavitation mechanism. The simulation results agree qualitatively with the experimental data, showing that cavitation performance is improved with positive inlet guide vane angles but hampered with negative ones. The cavitation performance itself is controlled by the cavitation volume, which first expands circumferentially when the net positive suction head decreases from a certain large value and then develops toward the axis radially after the net positive suction head reaches a certain value. This is when the cavitation performance deteriorates. Comparing cavitation volume for the critical net positive suction head as determined by two different methods, the method based on efficiency drop (NPSHeff.,1%) is found to be more suitable than that based on head drop (NPSHhead.,3%). Furthermore, the distribution of swirl is shown to be closely related to the distribution of cavitation, a feature that may be used to predict cavitation along the impeller.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3