Multi-autonomous underwater vehicles collaboratively search for intelligent targets in an unknown environment in the presence of interception

Author:

Ma Xi-wen1ORCID,Chen Yan-li123ORCID,Bai Gui-qiang1,Sha Yong-bai1,Liu Jun234

Affiliation:

1. School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China

2. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin, China

3. Pengcheng Laboratory, Shenzhen, China

4. School of Electronics and Information Engineering, Beihang University, Beijing, China

Abstract

We present a bionic neural wave network that uses multiple autonomous underwater vehicles to search and acquire intelligent targets in an unknown underwater environment. The neuron pheromone content is arranged according to neural wave diffusion and layer-by-layer energy attenuation, when underwater mesh space based on neural wave diffusion theory was established that the neuron nodes in the neural network structure correspond to obstacles, autonomous underwater vehicles, and targets in the environment. In order to solve the problems of over-allocation and under-allocation of the multi-autonomous underwater vehicles system during the cooperative capture of targets, a redistribution mechanism based on the improved self-organizing map algorithm is implemented and directed to rationalize task distribution. Two different taboo search methods are employed to update the autonomous underwater vehicle path in real time, and the polynomial coefficient solution method is used to fit partial path data. So that the autonomous underwater vehicle trajectory can be obtained and an interceptor position coordinate can be predicted. An auxiliary autonomous underwater vehicle is aimed to replace the intercepted autonomous underwater vehicle and the matching capture points are tracked to ensure the completion of the task so that the full range of hunting targets is identified. In order to simulate an unknown complex underwater environment, obstacles are randomly arranged around the target, the location information of the obstacle, and the target is unknown and unpredictable. Four simulation experiments were performed to verify the accuracy and efficiency of the algorithm under unknown environment. The results show that this algorithm can improve the path update average efficiency by 66% compared with other algorithms. Obviously, this algorithm is reasonable and effective.

Funder

Scientific and Technological Development Program of Jilin Province of China

Jilin Province Key Science and Technology R&D Project

National Natural Science Foundation of China

Research Fund for the Doctoral Program of Higher Education of China

National key Research and development program of China

Foundation of Education Bureau of Jilin Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3