Effect of infill pattern, density and material type of 3D printed cubic structure under quasi-static loading

Author:

Ma Quanjin12ORCID,Rejab MRM12,Kumar A Praveen3ORCID,Fu Hao4,Kumar Nallapaneni Manoj5,Tang Jianbo6

Affiliation:

1. Structural Performance Materials Engineering (SUPREME) Focus Group, Faculty of Mechanical & Automotive Engineering Technology, Universiti Malaysia Pahang, Pahang, Malaysia

2. School of Mechanical Engineering, Ningxia University, Yinchuan, China

3. Department of Mechanical Engineering, CMR Technical Campus, Hyderabad, India

4. Department of Civil Engineering, School of Engineering, University of Birmingham, Birmingham, UK

5. School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong

6. School of Computer Science and Technology, Shandong University, Qingdao, China

Abstract

The present research work is aimed to investigate the effect of infill pattern, density and material types of 3D printed cubes under quasi-static axial compressive loading. The proposed samples were fabricated though 3D printing technique with two different materials, such as 100% polylactic acid (PLA) and 70% vol PLA mixed 30% vol carbon fiber (PLA/CF). Four infill pattern structures such as triangle, rectilinear, line and honeycomb with 20%, 40%, 60%, and 80% infill density were prepared. Subsequently, the quasi-static compression tests were performed on the fabricated 3D printed cubes to examine the effect of infill pattern, infill density and material types on crushing failure behaviour and energy-absorbing characteristics. The results revealed that the honeycomb infill pattern of 3D printed PLA cubic structure showed the best energy-absorbing characteristics compared to the other three infill patterns. From the present research study, it is highlighted that the proposed 3D printed structures with different material type, infill pattern and density have great potential to replace the conventional lightweight structures, which could provide better energy-absorbing characteristics.

Funder

Ministry of Education Malaysia

Universiti Malaysia Pahang

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3