Effect of winding angle on the quasi-static crushing behaviour of thin-walled carbon fibre-reinforced polymer tubes

Author:

Quanjin Ma12ORCID,Rejab MRM12,Idris MS1,Hassan Shukur Abu3,Kumar Nallapaneni Manoj4

Affiliation:

1. Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia

2. School of Mechanical Engineering, University Ningxia, Yinchuan, China

3. Faculty of Engineering, Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia

4. School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong

Abstract

Carbon fibre-reinforced polymer (CFRP) tubes have been increasingly used in various structural applications due to its lightweight and attractive crashworthiness performance. The key parameter of the winding angle plays an important role in the energy-absorbing performance of CFRP tubes. In order to understand the relationship between the compressive performance and winding angle, this article is aimed to study the effect of winding angle with ±45°, ±60° and ±75° of CFRP tubes. The thin-walled CFRP tubes were performed by the quasi-static compression test, which were fabricated using the wet winding technique. The result was concluded that as the winding angle increased, the compressive modulus showed the decreasing trend. In the view of energy absorption (EA) and specific energy absorption (SEA), it was exhibited the decreasing trend as the winding angle increased. It was noted that CFRP tubes with ±45° winding angle recorded the average maximum SEA of 24.67 kJ kg−1. Moreover, the crushing behaviour of thin-walled CFRP tubes were involved and studied.

Funder

Universiti Malaysia Pahang

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3