Mechanical performance of composite flat specimens and pressure vessels produced by carbon/epoxy towpreg dry winding

Author:

Okten Yigit Kemal12,Kaynak Cevdet1ORCID

Affiliation:

1. Materials and Metallurgical Eng. Dept., Middle East Technical University, Ankara, Turkey

2. Roketsan Missiles Incorporation, Ankara, Turkey

Abstract

The main purpose of this study is to evaluate the effects of certain processing parameters on the mechanical performance of carbon/epoxy towpreg wound composite structures. For this purpose, composite sample productions and their evaluations were conducted in two steps. In the first step, dry winding of carbon/epoxy towpregs was used to produce flat composite plates. Their evaluation was performed by rheological analysis, interlaminar shear tests, and unidirectional tensile tests. In the second step, towpreg dry winding was used to produce composite pressure vessel samples. Their performance was evaluated by observing the effects of various winding process parameters on the safety of the vessels via hydrostatic burst pressure tests. Compared to the traditional wet filament winding, the main difficulty observed was maintaining the “straight towpreg path” necessary for efficient winding operations. This problem was prevented by applying higher tension forces during dry winding. Evaluation of the hydrostatic burst tests in terms of burst pressure, hoop strain and safe failure mode revealed that the optimum pressure vessel performance could be obtained in the vessel samples with “helical-hoop-helical winding layer sequence.” On the other hand, use of “complex helical pattern” resulted in no advantages at all, due to basically higher number of undulation zones acting as stress concentration zones.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3