Design of a real-time three-axis controller for contour error reduction based on model predictive control

Author:

Kang Zhong-Jian1,Zhao Kai23,Li Shurong4,Liu Zhe4

Affiliation:

1. College of New Energy, China University of Petroleum (East China), Qingdao, China

2. College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, China

3. College of Computer Science and Information Engineering, Anyang Institute of Technology, Anyang, China

4. School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China

Abstract

The machining accuracy is mainly indicated by the contour error especially in high-precision processing. Previously, scholars have proposed many controllers to reduce contour errors in real-time machining, such as the cross coupling controller and sliding mode controller. In this paper, we propose a controller based on model predictive control (MPC), and the contour error caused during path tracking can be effectively reduced by this controller. First of all, for two-dimensional (2D) and three-dimensional (3D) tool paths, their contour errors are deduced based on coordinate system transform. Second, the MPC-based controller is designed with the state-space discrete model of a machine tool. The contour error is regarded as a constraint during receding optimization. These are reasons why the presented control scheme is adapted with both bi-axis and three-axis machine tools. Furthermore, in order to improve the efficiency of receding optimization, the contour error of a 3D curve is simplified. Subsequently, the optimization problem is transformed into the standard form of quadratic programming. Finally, a 2D tool path and a 3D tool path are machined to test the proposed controller. Simulations and experiments show satisfactory results which indicate effectiveness of the proposed method.

Funder

Anyang Institute of Technology Research and Cultivation Fund

National Natural Science Foundation of China

Henan Province Programs for Science and Technology Development

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3