An IB-LBM design of a microfluidics-based cell capture system

Author:

Ma Jing-Tao12,Zu Wen-Hong3,Tang Xiao-Ying1,Xu Yuan-Qing1ORCID

Affiliation:

1. School of Life Science, Beijing Institute of Technology, Beijing, China

2. School of Engineering and Information Technology, University of New South Wales, Canberra, Australia

3. Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China

Abstract

The capture of cells in a microfluidic device based on U-shaped sieves is numerically investigated by the immersed boundary-lattice Boltzmann method (IB-LBM). The effects of the width of the inlet ( h), the radius of sieves ([Formula: see text]), and the radius of posts ([Formula: see text]) on the efficiency of the device on trapping cells are studied. It is found that a narrower inlet improves the capability of the device to capture cells and promotes the uniform trapping of cells. In addition, the device is not sufficiently efficient in capturing cells when the radius [Formula: see text] is small. By increasing [Formula: see text] gradually, the cells trapped in the device are found to grow up first and then decrease. This can be explained as an optimal size of apertures between posts to induce the cells to enter the sieve, and then the cells can plug up these apertures. Finally, the effects of the post size on the cell-capturing are studied. It is found that more cells can be captured as [Formula: see text] experiences a slight increase, while the capturing efficiency will not improve if continuing to increase [Formula: see text].

Funder

National Natural Science Foundation of China

Australian Research Council

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cell Electrical Measurement and Control Integrated Circuit System Design;Proceedings of the 2023 4th International Symposium on Artificial Intelligence for Medicine Science;2023-10-20

2. The effects of particle shape on inertial focusing;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-02-03

3. Acoustofluidic cell micro-dispenser for single cell trajectory control;Lab on a Chip;2022

4. Dynamic Behaviours of a Filament in a Viscoelastic Uniform Flow;Fluids;2021-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3