Affiliation:
1. School of Life Science, Beijing Institute of Technology, Beijing, China
2. CNPC National Engineering Research Center for Oil & Gas Drilling Equipment Co., Ltd., Baoji, China
Abstract
This paper proposes a 2D particle inertial focusing model by the immersed boundary–lattice Boltzmann method (IB-LBM), aiming to study the effects of particle shapes on their focusing state. First, as the validation, we investigated the inertial focusing of circular particles and got consistent focus positions with other previous reports. Then, the inertial focusing of the circle, rectangle, ellipse, and capsule particles were studied in detail. The results revealed that the particle shapes significantly influence the focusing positions, self-rotation, and running speed. At a given Reynolds number, the circular particle has a minimum average distance to the pipe center in the focus state, then follows the elliptical, capsular, and rectangular particles. The elliptical particle’s self-rotation cycle is in approximately the cubed relation to the long-short axis ratio. Moreover, the rectangle particle runs fastest at the same Reynolds number, followed by capsule, ellipse, and circle particles. Our study and the above results can provide a significant reference for screening or separating particles with different shapes in microfluidic devices.
Funder
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献