Data-driven model-free adaptive fractional-order sliding mode control for the SMA actuator with prescribed performance

Author:

Liu Hongshuai1ORCID,Hao Lina1,Liu Mingfang1,Zhao Zhirui1ORCID

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China

Abstract

In this paper, a novel data-driven model-free adaptive fractional-order sliding mode controller with prescribed performance is proposed for the shape memory alloy (SMA) actuator. Due to the strong asymmetric saturated hysteresis nonlinear characteristics of the SMA actuators, it is not easy to establish an accurate model and develop an effective controller. Therefore, we present a controller without using the model of the SMA actuators. In other words, the proposed controller depends merely on the input/output (I/O) data of the SMA actuators. To obtain the reasonable compensation for hysteresis, enhance the noise robustness of the controller, and reduce the chattering, a fractional-order sliding mode controller with memory characteristics is employed to improve the performance of the controller. In addition, the prescribed performance control (PPC) strategy is introduced in our work to guarantee the tracking errors converge to a sufficiently small boundary and the convergence rate is not less than a predetermined value which are significant and considerable in practical engineering applications of the SMA actuator. Finally, experiments are carried out, and results reveal the effectiveness and success of the proposed controller. Comparisons with the classical Proportional Integral Differential (PID), model-free adaptive control (MFAC), and model-free adaptive sliding mode control (MFAC-SMC) are also performed.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3