Research on coupling control of multiple permanent magnet synchronous motors based on NAISMC and SMDO

Author:

Hao YunhuiORCID,Zhao Ying

Abstract

The synchronous control system of multi-permanent magnet motor has the characteristics of many parameter variables and mutual coupling. The use of sliding mode control to optimize the parameters in the multi-permanent magnet motor system not only ensures the stability of the system operation, but also improves the control accuracy of the system, which is of great importance in practical applications. Based on this background, the study combines the new adaptive integral sliding mode control (NAISMC) with the improved sliding-mode disturbance observer (SMDO) and uses it for the multi-permanent magnet synchronous motor (MPMSM). In NAISMC, the controller updates and adjusts the parameters of the controller using an adaptive algorithm according to the state of the system and the error signals, which further improves the stability and robustness of the system. SMDO utilizes the principle of the sliding-mode observer to estimate the disturbance of the system, and eliminates the effect of the disturbance on the system by introducing a compensation term. The sliding mode observer calculates the disturbance estimate by comparing the difference between the actual and the estimated outputs. The disturbance estimate is finally used to generate the corresponding compensation signal to eliminate or minimize the effect of the disturbance on the system. NAISMC is combined with SMDO and used in the deviation coupling control of MPMSM. The study established a simulation experiment environment in MATLAB, set the simulation time to 0.4s, and the rated speed of the motor to 1000r/min. The improved sliding mode control scheme is tested, and the results show that the motor output speed, tracking error and electromagnetic torque variation under the improved sliding mode control scheme are smaller than those under the traditional sliding mode control scheme. Under the same simulation conditions, the multi-motor speed synchronization error under the improved sliding mode control scheme is around 0r/min, and its error value is close to 0, so the control effect is higher. In conclusion, the optimization scheme proposed in this study can effectively improve the stability and control accuracy of the multi-motor system.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference27 articles.

1. Research on adaptive non-singular fast terminal sliding mode control based on variable exponential power reaching law in manipulators;X. Zhang;Proc. Inst. Mechanical Eng., Part I: J. Syst. Control Eng,2022

2. Analysis of single input dual output buck converter with reduced cross regulation using decoupled sliding mode control strategy;S. Nanthagopal;Int. J. Circ. Theory Appl.,2022

3. Adaptive complementary sliding mode control for synchronous reluctance motor with direct-axis current control;F. J. Lin;IEEE Trans. Ind. Electron.,2022

4. Trajectory planning and low-chattering fixed-time nonsingular terminal sliding mode control for a dual-arm free-floating space robot;W. Yan;Robotica.,2022

5. A non-singular fast terminal sliding mode control scheme for residual current compensation inverters in compensated distribution networks to mitigate powerlinebushfires;T. K. R oy;IET Gener., Transm. Distrib,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3