Experimental investigations on nucleate pool boiling over micro-finned cylindrical surfaces

Author:

Shah Balkrushna1,Shah Kathit1ORCID,Patel Parth1,Lakhera Vikas J1

Affiliation:

1. Department of Mechanical Engineering, Institute of Technology, Nirma University, Ahmedabad, India

Abstract

The nucleate pool boiling heat transfer over micro-finned cylindrical surfaces has application in the heat exchangers used in thermal power plants and chemical industries. The estimation of boiling heat transfer coefficient is an important parameter in the design of two-phase heat exchangers using micro-finned cylindrical surfaces. In the present work, related experimental investigations on four micro-finned cylindrical surfaces with different surface geometry using refrigerant R-141b at atmospheric pressure are conducted to determine the boiling heat transfer coefficient over micro-finned cylindrical surfaces. A correlation is developed by dimensional analysis wherein the effects of geometrical parameters, operating pressure and thermo-physical properties of fluids are taken into consideration and dimensional analysis conducted using Buckingham π-theorem. The correlation developed utilizes experimental data obtained over the present study as well as from previous studies by various researchers including experimental data for water over different micro-finned cylindrical surfaces at 1 bar by Mehta and Kandlikar, experimental data for R123 at 0.97 bar by Saidi et al. and experimental data for R134a over micro-finned cylindrical surface at 6.1 bar, 8.1 bar, 10.1 bar and 12.2 bar by Rocha et al. The heat flux ranging from 5 to 1100 kW/m2 are considered for the analysis. The data points have been compared with the proposed correlation and the absolute average deviation of the whole data set was obtained as 13.43% with root mean square deviation of 0.0273. All the predicted values were within ±15% of the experimental values of the boiling heat transfer coefficient.

Funder

Nirma University

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3