Evaluation of Pressure, Surface Characteristics, and Fluid Properties Effect on Pool Boiling Heat Transfer Over Plain and External Micro-Finned Cylindrical Surfaces

Author:

Shah Balkrushna A.1,Patel Parth1,Lakhera Vikas J.1

Affiliation:

1. Nirma University Department of Mechanical Engineering, Institute of Technology, , Ahmedabad 382481, Gujarat , India

Abstract

Abstract Pool boiling is extensively used in high- and low-temperature heat exchangers as it results in a high heat transfer coefficient compared to natural and single-phase forced convection. Pool boiling experimental study conducted over a plain cylindrical surface (PS) and four external micro-finned cylindrical surfaces (MFCSs), with R123 and R141b at different pressures in the heat flux range 20–100 kW/m2, is presented in this paper. The objective of the present study is to explore the effect of pressure, surface characteristics, and fluid properties on pool boiling heat transfer over plain and micro-finned cylindrical surfaces. The boiling performance improved at a higher pressure, irrespective of the working fluid used for all the test surfaces. It was found that, with the rise in pressure, the boiling heat transfer coefficient (BHTC) for the MFCSs increases at a higher rate than the PS. In comparison with PS, the average rise in the BHTC with pressure, for the MFCS-1, MFCS-2, MFCS-3, and MFCS-4 with R123 were 69.3% to 84.3%, 3.3% to 9.9%, 16.9% to 22.4%, and 29.4% to 40.2%, respectively. The higher BHTC over micro-finned cylindrical surfaces results due to more nucleation site results from lower surface wettability and micro-finned geometry. It was observed that the pool boiling over the plain surface with R123 results in higher BHTC compared with R141b at all tested pressures, whereas the pool boiling characteristics over MFCSs varied based on the combined effect of micro-finned surface geometry, surface wettability, heat flux, pressure and fluid properties. The bubble departure diameters over all the surfaces were measured at 30 W, 60 W, and 90 W at different pressures, and a new model of bubble departure diameter was proposed based on dimensionless terms. The total mean absolute error (MAE) of the proposed bubble departure diameter model was about 6.79% for the whole range of data points.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3