Study on ultrasonic-assisted drilling of Ti6Al4V using 3-flute drill in the finite element simulation

Author:

Wang Peng1,Wang Dazhong1ORCID

Affiliation:

1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China

Abstract

Continuous chip is one of the major problems during drilling Ti6A14V, and chip breaking is dependent on many factors such as drilling parameters, tool geometries and type of drill bits used. This paper attempts to analyze the effect of various drilling parameters such as feed rate, spindle speed on performance characteristics such as chip morphology, thrust force, temperature, and tool wear in conventional drilling and ultrasonic-assisted drilling of Ti6A14V using twist drill bit and 3-flute drill bit in order to optimize the chip breakability of Ti6A14V. The twist and 3-flute drill bit are utilized to establish the finite element models to simulate the drilling process with Lagrangian approach in DEFORM-3D software. The results of the simulations not only reveal obvious varying regular pattern of thrust force, temperature, tool wear depth, chip thickness and damage with the increasing of feed rates, spindle speeds, which confirm the capability and advantage of finite element model of the drilling process, but also provide a more profound knowledge about the drilling mechanism including the effect of 3-flute drill bit in ultrasonic-assisted drilling on chip breakability and tool wear.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of laser polishing on Ti6Al4V based on energy density;Journal of Materials Processing Technology;2024-10

2. Wear characteristics of WS2 nanoparticle-assisted micro-EDM textured carbide inserts during machining of Ti6Al4V;Tribology International;2024-07

3. Finite element simulation investigation on ultrasonic vibration assisted micro milling of AISI 410 grade MSS;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-06-27

4. Study on the mechanism of cutting Ti6Al4V with complex microstructure cutting tools;The International Journal of Advanced Manufacturing Technology;2024-04-30

5. Investigation of the effect of ultrasonic vibration on the performance of the friction drilling by FEM simulation;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3