Investigation on the modeling and dynamic characteristics of a fast-response and large-flow water hydraulic proportional cartridge valve

Author:

Han Mingxing1,Liu Yinshui2ORCID,Zheng Kan1,Ding Youchun1,Wu Defa2

Affiliation:

1. College of Engineering, Huazhong Agricultural University, Wuhan, China

2. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China

Abstract

In large-power and high-pressure hydraulic systems, the maximum instantaneous flow rate is often several thousand liters per minute. Normal proportional valves are often difficult to meet their requirements for large flow rate and fast response at the same time. And the leakage of hydraulic oil will seriously pollute the environment. Therefore, a novel water hydraulic proportional valve with fast response and high flow capacity is presented for the large transient power hydraulic system in this paper. The valve utilizes a two-stage structure with two 2/2-way water hydraulic proportional valves as the pilot stage and a cartridge poppet valve as the main stage to achieve fast-response and large-flow capacity simultaneously. A detailed and precise nonlinear mathematical model of the valve considering both structural parameters and flow force is developed. A comprehensive performance optimization has been carried out, which can be mainly divided into computational fluid dynamics simulation optimization based on reducing flow force and multi-objective optimization based on genetic algorithm. The effects of double U-grooves' parameters on the flow force (flow-induced loads) have been studied in detail by numerical simulation. Through the grooves geometry optimization, the maximum flow force can be reduced by 10%. Then, the influences of structure parameters on the performance of step response have been studied, and the optimal parameters of the valve have been obtained by multi-objective optimization based on genetic algorithm. The maximum overshoot has been reduced from 15% to 6% (about 60%) and the adjusting time has been reduced from 58 ms to 48 ms. The dynamic characteristics of the valve have been improved effectively. Finally, a test apparatus which has the ability to provide transient large flow is built. The accuracy of simulation model and optimization design method is verified by test results.

Funder

Fundamental Research Funds for the Central Universities

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3