A nonlinear dynamic model for analysis of the combined influences of nonlinear internal excitations on the load sharing behavior of a compound planetary gear set

Author:

Zhang Haibo1,Wu Shijing1,Peng Zeming1

Affiliation:

1. School of Power and Mechanical Engineering, Wuhan University, Hubei, China

Abstract

Nonlinear internal excitations, which include meshing stiffness, backlash, and bearing clearance, may cause nonuniform load distribution in compound planetary gear transmission. To quantify the influence of nonlinear internal excitations on load sharing behavior, and to study the combined effects of meshing stiffness, backlash, and bearing clearance on load sharing behavior, this paper develops a nonlinear dynamic model of a Ravigneaux compound planetary gear set with all members possessing translational and torsional vibration degrees of freedom, as an extend dynamic model to the prior research for compound planetary gear set. In detail, the dynamic model is derived on the basis of the second Lagrange equations, and the load sharing coefficients for different meshing pairs are defined and calculated. Single factor analysis is introduced to investigate the influence of each nonlinear internal excitation on load sharing coefficient ( LSC). On the basis of single factor analysis, Taguchi method is incorporated with the nonlinear dynamic model to study the combined effects of nonlinear internal excitation and figure out the most significant control factor affecting LSC among meshing stiffness, backlash, and bearing clearance. The calculation results are evaluated by using signal-to-noise ( S/ N) analysis and ANOVA method. The results indicate that backlash affects the load sharing behavior most significantly, compared with mean value of meshing stiffness and bearing clearance.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3