Affiliation:
1. Department of Mechanical Engineering, Ohio State University, Columbus, OH 43210
2. Ohio State University, Distinguished Professor Chair and Executive Dean, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
Abstract
This study investigates the dynamics of planetary gears where nonlinearity is induced by bearing clearance. Lumped-parameter and finite element models with bearing clearance, tooth separation, and gear mesh stiffness variation are developed. The harmonic balance method with arc length continuation is applied to the lumped-parameter model to obtain the dynamic response. Solution stability is analyzed using Floquet theory. Rich nonlinear behavior is exhibited, consisting of nonlinear jumps, a hardening effect induced by the transition from no bearing contact to contact, and softening induced by tooth separation. Bearings of the central members (sun, carrier, and ring) impact against the bearing races near resonances, which leads to coexisting solutions in wide speed ranges, grazing bifurcation, and chaos. Secondary Hopf and period-doubling bifurcations are the routes to chaos. Input torque can suppress some of the nonlinear effects caused by bearing clearance.
Subject
Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献