Affiliation:
1. Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan University of Arts and Science, China
2. School of Information Technology and Management, Hunan University of Finance and Economics, China
Abstract
In view of the fact that the random noise interferes with the characteristic extraction of a rolling bearing fault signal, a new method of fault feature extraction is proposed based on the combination of the generalized S transform and singular value decomposition (SVD). Firstly, the 2D time–frequency spectrum bearing fault signal is obtained by applying the generalized S transform, and the time–frequency spectrum matrix is used as the objective matrix of SVD to solve the singular values. Then the K-means clustering algorithm is used to classify the singular value sequence, and the singular values for reconstruction are determined. Finally, the de-noised matrix is carried out the generalized S inversion transform to get the de-noised fault signal, and the power spectrum is calculated to finish the fault diagnosis. By analyzing the simulated signal and the actual bearing fault data, results show that the proposed method can effectively identify typical faults of rolling bearings and improve the diagnosis effect of rolling bearing faults. And it provides a new way to realize the fault diagnosis of rolling bearings under noise.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献