Performance enhancing for a highly loaded tandem cascade by endwall incoming vortex–corner separation interaction

Author:

Cao Zhiyuan1ORCID,Gao Xi1ORCID,Song Cheng1ORCID,Zhang Xiang1,Zhang Fei1,Liu Bo1

Affiliation:

1. School of Power and Energy, Northwestern Polytechnical University, Xi’an, China

Abstract

In highly loaded tandem compressor cascades, corner separations can still exist. In order to eliminate corner separations in highly loaded tandem compressor cascades, incoming vortex–corner separation interaction mechanism was investigated. Different schemes of the vortex generators, which located at different pitchwise locations and could generate vortexes with different rotation directions, were designed and investigated numerically. Results show that, severe corner separation occurred at the front blade passage of the tandem cascade; by utilizing flow control method of incoming vortex–corner separation interaction, the corner separation could be reduced significantly. The optimal control effect of incoming vortex on corner separation was achieved with anticlockwise rotation and the vortex generator is located right ahead of the leading edge of tandem cascade, a maximum loss coefficient reduction of 21.8% being achieved. Different from single blade configuration, the boundary layer of tandem cascade was regenerated at rear blade suction surface due to the injection flow from blade gap between the two blades. Though corner separations could be reduced at both conditions, the loss of tandem cascade with clockwise incoming vortex is higher than that with anticlockwise vortex, and a smaller corner separation region at suction surface was achieved by utilizing clockwise vortex. The mechanism was that anticlockwise incoming vortex reduced the corner separation but increased secondary flow, while clockwise vortex enhanced passage vortex and decreased secondary flow. For clockwise incoming vortex near pressure surface, the vortex would be divided into two parts at the leading edge of rear blade, one would go through the blade gap and deteriorate flow fluid near rear blade suction surface, the other flowed downstream along pressure surface. The rotation direction of different incoming vortexes became the same as the passage vortex at rear blade passage of tandem cascade, which was mainly due to the effect of secondary flow.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities of China

Natural Science Foundation of Shaanxi Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3