Some Aspects of the Transonic Compressor Tandem Design

Author:

Hergt Alexander1,Grund S.1,Klinner J.1,Steinert W.1,Beversdorff M.1,Siller U.2

Affiliation:

1. German Aerospace Center (DLR), Institute of Propulsion Technology, 51147 Cologne, Germany e-mail:

2. AeroDesignWorks GmbH, Hauptstraße 108, 50996 Cologne, Germany e-mail:

Abstract

For the development of the latest generation of axial compressors, it is necessary to enlarge the design space by using advanced aerodynamic processes. This enables a further increase in efficiency and performance. The use of a tandem blade configuration in a transonic compressor row provides the possibility to enlarge the design space. It is necessary to address the design aspects a bit more in detail in order to efficiently apply this blading concept to turbomachinery. Therefore, in the current study, the known design aspects of tandem blading in compressors will be summed up under the consideration of the aerodynamic effects and construction characteristics of a transonic compressor tandem. Based on this knowledge, a new transonic compressor tandem cascade (DLR TTC) with an inflow Mach number of 0.9 is designed using modern numerical methods and a multi-objective optimization process. Three objective functions as well as three operating points are used in the optimization. Furthermore, both tandem blades and their arrangement are parameterized. From the resulting database of 1246 members, a final best member is chosen as the state-of-the-art design for further detailed investigation. The aim of the ensuing experimental and numerical investigation is to answer the question, whether the tandem cascade resulting from the modern design process fulfills the described design aspects and delivers the requested performance and efficiency criteria. The numerical simulations within the study are carried out with the DLR flow solver TRACE. The experiments are performed at the transonic cascade wind tunnel of DLR in Cologne. The inflow Mach number during the tests is 0.9, and the AVDR is adjusted to 1.3 (design value). Wake measurements with a three-hole probe are carried out in order to determine the cascade performance. The experimental results show an increase in losses and a reduction of the cascade deflection by about 2 deg compared to the design concept. Nevertheless, the experimental and numerical results allow a good understanding of the aerodynamic effects. In addition, planar PIV was applied in a single S1 plane located at midspan to capture the velocity field in the wake of blade 1 in order to analyze the wake flow in detail and describe its influence on the cascade deflection and loss behavior. Finally, an outlook will be given on what future tandem compressor research should be focused.

Publisher

ASME International

Subject

Mechanical Engineering

Reference55 articles.

1. Versuche an Beschaufelungen von Verzögerungsgittern mit großer Umlenkung;Fickert;Forschung auf dem Gebiet des Ingenieurwesens,1949/1950

2. The Slotted Blade Axial-Flow Blower;Sheets,1955

3. High-Lift Aerodynamics;Smith;AIAA J. Aircraft,1975

4. The Handley Page Wing;Page;Aeronaut. J.,1921

5. Further Experiments on Tandem Aerofoils;LePage,1923

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3