Analysis about enhancement in thermal characteristics of viscous fluid flow with induction of ferrite particles by using Cattaneo Christov theory

Author:

Tahir Wajiha1,Bilal S1,Kousar Nabeela1,Shah Imtiaz Ali1,Alqahtani Ali S2

Affiliation:

1. Department of Mathematics, Air University, Islamabad, Pakistan

2. Department of Mathematics, College of Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia

Abstract

The elevated convective heat transfer process plays vital role in performance of electronic and engineering equipment’s. Over the years various attempts have been executed in this regards, including the insertion of nano elements in poorly conducting liquids. Initially, improvement in thermophysical characteristics of ordinary fluids was observed but with advancement in nanoparticles structuring new classifications in nano elements are found. Among these discoveries experimentations have explored highly fascinating and intrinsically featured class of nanomaterials renowned as ferromagnetic nano constituents. So, the motivation regarding this investigation is execution about change in thermal features of base liquid with insertion of different ferrite particles. Here, water is considered as based liquid and Nickel Zinc Ferrite (NiZnFe2O4) and magnetite ferrite (Fe2O4) as solid particles are inserted. Impact of magnetic dipole is also envisioned to produce optimized effectiveness of ferrite particles. Energy transmission in flow domain is depicted by incorporation of Cattaneo-Christov heat flux model. Mathematical formulation containing thermo mechanical features of ferrite particles are attained in complexly structured partial differential system and afterwards similarity transformations are implemented for transmutation into ODES. Constructed problem is simulated by implementing numerical approaches. Influence of involved variables on associated distributions are displayed through graphs and tables. It is demonstrated that momentum as well as heat transfer of base fluid augments with inclusion of Nickel Zinc ferrite as compared magnetite ferrite. It is inferred that velocity shows declining behavior against Curie temperature whereas reverse behavior is seen for temperature profile. It is divulged that viscous dissipation imparts diminishing impact on momentum whereas contrary behavior is depicted in case of temperature profile. In addition, increment in wall drag magnitude and thermal flux is manipulated by incorporation of (NiZnFe2O4) rather than (Fe2O4).

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3